Mass transfer in the Earth’s interior: fluid-melt interaction in aluminosilicate–C–O–H–N systems at high pressure and temperature under oxidizing conditions
- Keywords:
- Volatiles, spectroscopy, melt structure, fluid structure, temperature, pressure
Understanding what governs the speciation in the C–O–H–N system aids our knowledge of how volatiles affect mass transfer processes in the Earth’s interior. Experiments with aluminosilicate melt + C–O–H–N volatiles were, therefore, carried out with Raman and infrared spectroscopy to 800 °C and near 700 MPa in situ in hydrothermal diamond anvil cells. The measurements were conducted in situ with the samples at the desired temperatures and pressures in order to avoid possible structural and compositional changes resulting from quenching to ambient conditions prior to analysis. Experiments were conducted without any reducing agent and with volatiles added as H2O, CO2, and N2 because both carbon and nitrogen can occur in different oxidation states.