Abstract

Auroral substorms as an electrical discharge phenomenon

During the last 50 years, we have made much progress in studying auroral substorms (consisting of the growth phase, the expansion phase, and the recovery phase). In particular, we have quantitatively learned about auroral substorms in terms of the global energy input–output relationship. (i) What powers auroral substorms? (ii) Why is there a long delay (1 h) of auroral activities after the magnetosphere is powered (growth phase)? (iii) How much energy is accumulated and unloaded during substorms? (iv) Why is the lifetime of the expansion phase so short (1h)? (v) How is the total energy input–output relationship? (vi) Where is the magnetic energy accumulated during the growth phase? On the basis of the results obtained in (i)–(vi), we have reached the following crucial question: (vii) how can the unloaded energy produce a secondary dynamo, which powers the expansion phase? Or more specifically, how can the accumulated magnetic energy get unloaded such that it generates the earthward electric fields needed to produce the expansion phase of auroral substorms? It is this dynamo and the resulting current circuit that drive a variety of explosive auroral displays as electrical discharge phenomena during the expansion phase, including the poleward advance of auroral arcs and the electrojet. This chain of processes is summarized in Section 4.2. This is the full version of work published by Akasofu (2015).